Journals

Copyright notice

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

IEEE copyright policy

  1. M. Pätzold, “Mobile Radio Column: Towards realizing the full potential of a 5G-empowered world,
    IEEE Veh. Technol. Mag., vol. 15, no. 1, 2020, DOI 10.1109/MVT.2019.2956891.
  2. A. Abdelgawwad, A. Borhani, M. Pätzold:
    Modelling, analysis, and simulation of the micro-Doppler effect in wideband indoor channels with confirmation through pendulum experiments,
    Sensors, vol. 20, no. 4, 2020, DOI 10.3390/s 20041049.
  3. M. Pätzold:
    Mobile Radio Column: 5G is going live in country after country,
    IEEE Veh. Technol. Mag., vol. 14, no. 4, 2019.
  4. C. A. Gutierrez, M. Pätzold, N. Ortega, C. A. Azurdia-Meza, F. M. Maciel-Barboza:
    Doppler shift characterization of wideband mobile radio channels, IEEE Trans. Veh. Technol., 2019,
    DOI 10.1109/TVT.2019.2945936.
  5. A. Chelli and M. Pätzold:
    A machine learning approach for fall detection based on the instantaneous Doppler frequency,
    IEEE Access, vol. 7, 2019, DOI10.1109/ACCESS.2019.2906693.
  6. A. Borhani, M. Pätzold, and K. Yang:
    Time-frequency characteristics of in-home radio channels influenced by activities of the home occupant,
    Sensors, vol. 19, no. 16, Aug. 2019, DOI 10.3390/519163557.
  7. M. Pätzold:
    Mobile Radio Column: Myths and reality of 5G communications,
    IEEE Veh. Technol. Mag., vol. 14, no. 3, 2019,
    DOI 10.1109/MVT.2019.2919852.
  8. M. Pätzold:
    Mobile Radio Column: 5G sets sail around the globe,
    IEEE Veh. Technol. Mag., vol. 14, no. 2, 2019,
    DOI 10.1109/MVT.2019.2902773.
  9. M. Pätzold:
    Mobile Radio Column: 5G is coming around the corner,
    IEEE Veh. Technol. Mag., vol. 14, no. 1, 2019,
    DOI 10.1109/MVT.2018.2884042.
  10. A. Chelli and M. Pätzold:
    A machine learning approach for fall detection and daily living
    activity recognition,
    IEEE Access, 2019, DOI10.1109/ACCESS.2019.2906693.
  11. M. Pätzold:
    Mobile Radio Column: It’s time to go big with 5G,
    IEEE Veh. Technol. Mag., vol. 13, no. 4, Dec. 2018.
  12. Borhani and M. Pätzold:
    A non-stationary channel model for the development of non-wearable radio fall detection systems,
    IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7718–7730, Nov. 2018, DOI: 10.1109/TWC.2018.2869782.
  13. N. Hajri, N. Youssef, T. Kawabata, M. Pätzold, W. Dahech:
    Statistical properties of double Hoyt fading with applications to the performance analysis of wireless communication systems,
    IEEE Access, 2018, pp. 19597-19609, DOI:10.1109/ACCESS.2018.2820746.
  14. A. Chelli, E. Zedini, M.-S. Alouini, M. Pätzold and I. Balasingham:
    Throughput and delay analysis of HARQ with code combining over double Rayleigh fading channels,
    IEEE Veh. Technol., vol. 67, no. 5, May 2018.
  15. M. Pätzold, and C. A. Gutierrez:
    Modeling and analysis of non-stationary vehicle-to-infrastructure channels with time-variant angles of arrival,
    Wireless Communications and Mobile Computing, Special Issue on ’Channel Modeling and Simulation for Vehicular Communications’, 2018, DOI:10.1155/2018/6396173 .
  16. Y. Ma, B. O. Hogstad, M. Pätzold, and P. Crespo:
    Statistical modeling, simulation, and experimental verification of wideband indoor mobile radio channels,
    Wireless Communications and Mobile Computing, Special Issue on ’Channel Modeling and Simulation for Vehicular Communications’, 2018, DOI 10.1155/2018/8271765.
  17. M. Pätzold:
    Mobile Radio Column: The final sprint of fifth-generation toward commercialization,
    IEEE Veh. Technol. Mag., vol. 13, no. 3, 2018.
  18. M. Pätzold:
    Mobile Radio Column: Countdown for full-scale development of 5G new radio,
    IEEE Veh. Technol. Mag., vol. 13, no. 2, 2018.
  19. M. Pätzold:
    Mobile Radio Column: 5G readiness on the horizon,
    IEEE Veh. Technol. Mag., vol. 13, no. 1, 2018.
  20. M. Pätzold:
    Mobile Radio Column: The benefits of smart wireless technologies,
    IEEE Veh. Technol. Mag., vol. 12, no. 4, pp. 5–12, 2017.
  21. M. Pätzold:
    Mobile Radio Column: Fifth-generation technology offers trillion-Dollar business opportunities,
    IEEE Veh. Technol. Mag., vol. 12, no. 3, pp. 4–11, 2017.
  22. M. Pätzold:
    Mobile Radio Column: Fifth-generation developments are in full swing,
    IEEE Veh. Technol. Mag., vol. 12, no. 2, pp. 4–12, 2017.
  23. C. A. Gutiérrez, J. T. Gutiérrez-Mena, J. M. Luna-Rivera, D. U. Campos-Delgado, R. Velázquez, and M. Pätzold:
    Geometry-based statistical modeling of non-stationary time and frequency dispersive mobile-to-mobile channels,
    IEEE Trans. Veh. Technol., vol. 67, no 1, Jan. 2018.
  24. M. Naderi, M. Pätzold, R. Hicheri, and N. Youssef:
    A geometry-based underwater acoustic channel model allowing for sloped ocean bottom conditions,
    IEEE Trans. Wireless Commun., 2017, DOI:10.1109/TWC.2017.2664829.
  25. W. Dahech, M. Pätzold, C. A. Gutiérrez, and N. Youssef:
    A non-stationary mobile-to-mobile channel model allowing for velocity and trajectory variations of the mobile stations,
    IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1987–2000, Mar. 2017.
  26. V. D. Nguyen, N. S. Luong, and M. Pätzold:
    A method to estimate the path gains and propagation delays of underwater acoustic channels using the arrival phase information of the multipath components,
    Int. J. Electronics and Communications (IJEC), 2017, DOI 10.1016/j.aeue.2017.01.003.
  27. A. Borhani, G. L. Stüber, and M. Pätzold:
    A random trajectory approach for the development of non-stationary channel models capturing different scales of fading,
    IEEE Trans. Veh. Technol., 2016, DOI 10.1109/TVT.2016.2548563.
  28. R. Hicheri, G. Rafiq, T. Kawabata, M. Pätzold, and N. Youssef:
    On the statistical properties of the capacity outage intervals in OSTBC-MIMO Rayleigh fading channels,
    IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3548–3559, May 2016, DOI10.1109/TWC.2016.2522962.
  29. A. Borhani and M. Pätzold:
    A highly flexible trajectory model based on the primitives of Brownian fields–Part II: Analysis of the statistical properties,
    IEEE Trans. Wireless Commun., Aug. 2015, DOI: 10.1109/TWC.2015.2470257.
  30. N. Hajri, N. Youssef, and M. Pätzold:
    On the statistical properties of phase crossing and random FM noise in double Rayleigh fading channels,
    IEEE Trans. Veh. Technol., 2015, DOI 10.1109/TVT.2015.2416638.
  31. M. Pätzold, A. Sibille, K. T.Wong, and A. Zajic:
    Editorial: Special Issue on ‘The state of the art in propagation and mobile channel modeling’,
    IEEE Veh. Technol. Mag., vol. 10, no. 2, pp. 26–28, 2015.
  32. N. Avazov and M. Pätzold:
    A novel wideband MIMO car-to-car channel model based on a geometrical semicircular tunnel scattering model,
    IEEE Trans. Veh. Technol., 2015, DOI 10.1109/TVT.2015.2415256.
  33. C. Vladeanu, I. Banica, B. O. Hogstad, M. Pätzold, and C. E. D. Sterian:
    Combining super-orthogonal space-frequency trellis coding, constellation shaping by shell mapping, and OFDM for high data rate broadband mobile communications,
    Transactions on Emerging Telecommunications Technologies, (ETT), Sep. 2014, DOI:10.1002/ett.2888.
  34. Hajri, N. Youssef, and M. Pätzold:
    On the statistical properties of phase crossing and random FM noise in double Rayleigh fading channels,
    IEEE Trans. Veh. Technol., 2015, DOI 10.1109/TVT.2015.2416638.
  35. Borhani and M. Pätzold:
    A highly flexible trajectory model based on the primitives of Brownian fields–Part II: Analysis of the statistical properties,
    IEEE Trans. Wireless Commun., Aug. 2015, DOI: 10.1109/TWC.2015.2470257.
  36. Hicheri, G. Rafiq, T. Kawabata, M. Pätzold, and N. Youssef:
    On the statistical properties of the capacity outage intervals in OSTBC-MIMO Rayleigh fading channels,
    IEEE Trans. Wireless Commun., 2016, vol. 15, no. 5, pp. 3548–3559.
  37. Borhani and M. Pätzold:
    A random trajectory approach for the development of non-stationary channel models capturing different scales of fading,
    IEEE Trans. Veh. Technol., 2015, DOI 10.1109/TVT.2016.2548563.
  38. M. Pätzold, A. Sibille, K. Wong, A. Zajic:
    Editorial: The state of the art in propagation and mobile channel modeling,
    IEEE Veh. Technol. Mag., Special Issue on “Communication on the Go”, 2015, vol. 10, no. 2,
    DOI 10.1109/MVT.2015.2412192 .
  39. Avazov, N. and M. Pätzold:
    A novel wideband MIMO car-to-car model based on a geometrical semicircular tunnel scattering model,
    IEEE Trans. Veh. Technol. 2015, DOI: 10.1109/TVT.2015.2415256 .
  40. N. Hajri, N. Youssef and M. Pätzold:
    On the statistical properties of phase crossing and random FM noise in double Rayleigh fading channels,
    IEEE Trans. Veh. Technol. 2015, DOI: 10.1109/TVT.2015.2416638 .
  41. M. Pätzold and G. Rafiq:
    Performance evaluation of sum-of-cisoids Rice / Rayleigh fading channel simulators with respect to the bit error probability,
    Radio Science, Special Issue on “URSI Symposium on Radiowave Propagation and Remote Sensing, 2013”, vol. 49, no. 11, pp. 997–1007, 2014, DOI: 10.1002 / 2014RS005496
  42. A. Chelli, E. Zedini, M. Alouini, J. Barry, and M. Pätzold:
    Performance and delay analysis of hybrid ARQ with incremental redundancy over double Rayleigh fading channels,
    IEEE Trans. Wireless Commun., vol. 13, no. 11, pp. 6245–6258, Nov. 2014.
  43. A. Borhani and M. Pätzold:
    A highly flexible trajectory model based on the primitives of Brownian fields–Part I: Fundamental principles and implementation aspects,
    IEEE Trans. Wireless Commun., 2014, DOI 10.1109 / TWC.2014.2360181.
  44. C. Vladeanu, I. Banica, B. O. Hogstad, M. Pätzold, and C. E. D. Sterian:
    Combining super-orthogonal space-frequency trellis coding, constellation shaping by shell mapping, and OFDM for high data rate broadband mobile communications,
    Transactions on Emerging Telecommunications Technologies, Sep. 2014, DOI:10.1002 / ett.2888.
  45. A. Borhani and M. Pätzold:
    A novel non-stationary channel model utilizing Brownian random paths,
    REV Journal on Electronics and Communications (JEC), 2014, vol. 4, no.1-2, pp. 8-15, Jan.-Jul. 2014.
  46. A. Borhani and M. Pätzold:
    On the spatial configuration of scatterers for given delay-angle distributions,
    IAENG Engineering Letters, vol. 22, no.1, pp. 34–38, Feb. 2014.
  47. A. Borhani and M. Pätzold:
    A unified disk scattering model and its angle-of-departure and time-of-arrival statistics,
    IEEE Trans.Veh. Technol., vol. 62, no. 2, pp. 473–485, Feb. 2013.
  48. A. Borhani and M. Pätzold,
    Correlation and spectral properties of vehicle-to-vehicle channels in the presence of moving scatterers,
    IEEE Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4228-4239, Nov. 2013.
  49. G. Rafiq, B. Talha, M. Pätzold, J. G. Luis, G. Ripa, I. Carreras, C. Coviello, S. Marzorati, G. P. Rodrigues, G. Herrero, and M. Desaeger:
    What´s new in intelligent transportation systems: An overview of European projects and initiatives,
    IEEE Vehicular Technology Magazine, 2013, vol. 8, no. 4,  pp. 45-69, Dec. 2013.
  50. B. O. Hogstad, C. A. Gutierrez and M. Pätzold and P. M. Crespo:
    Classes of sum-of-cisoids processes and their statistics for the modelling and simulation of mobile fading channels,
    EURASIP Journal on Wireless Communications and Networking, Jan. 2013, DOI 10.1186/1687-1499-2013-125.
  51. A. Borhani and M. Pätzold:
    A unified disk scattering model and its angle-of-departure and time-of-arrival statistics,
    IEEE Transactions on Vehicular Technology, vol. 62, no. 2, Feb. 2013.
  52. M. Pätzold, N. Youssef, and C. A. Gutierrez:
    Editorial: Modeling and simulation of mobile radio channels,
    Hindawi Publishing Corporation, Special Issue on “Modelling and Simulation in Engineering”, 2012, DOI 10.1155/2012/160297.
  53. L. Vela-Garcia, J. Vázquez Castillo, R. Parra-Michel and M. Pätzold:
    An accurate hardware sum-of-cisoids fading channel simulator for isotropic and non-isotropic mobile radio environments,
    In: Special Issue: Modeling and Simulation in Engineering, vol. 2012, Hindawi, 2012, ISSN: 1687-5605 (Online).
  54. N. Avazov and M. Pätzold:
    Design of wideband MIMO car-to-car channel models based on the geometrical street scattering model,
    In: Special Issue: Modeling and Simulation in Engineering, vol. 2012, Hindawi, 2012, ISSN: 1687-5605 (Online).
  55. C. A. Gutiérrez, M. Pätzold, A. Sandoval, and C. Delgado-Mata:
    An ergodic sum-of-cisoids simulator for multiple uncorrelated Rayleigh fading channels under generalized scattering conditions,
    IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2375–2382, Jun. 2012.
  56. C. A. Gutiérrez and M. Pätzold:
    On the correlation and ergodicity properties of the squared envelope of SOC Rayleigh fading channel simulators,
    Wireless Personal Communications (WPC), 2012, DOI: 10.1007/s11277-011-0493-2.
  57. G. Rafiq, B. O. Hogstad, and M. Pätzold:
    On the first and second order statistics of the capacity of N*Nakagami-m channels for applications in cooperative networks,
    EURASIP – J. Wireless Communications and Networking, Special Issue on “Multicell Cooperation for Next Generation Communication Systems, 2012, DOI:10.1186/1687-1499-2012-24.
  58. A. Fayziyev and M. Pätzold:
    An improved iterative nonlinear least square approximation method for the design of SISO wideband mobile radio channel simulators,
    REV Journal on Electronics and Communications, vol. 2, no. 1–2, pp.19-25, January–June, 2012.
  59. G. Rafiq, V. Kontorovich, and M. Pätzold:
    The impact of spatial correlation on the statistical properties of the capacity of Nakagami-m channels with MRC and EGC,
    EURASIP – Wireless Communications and Networking, vol. 2011, Sep. 2011, DOI:10.1186/1687-1499-2011-116.
  60. C. A. Gutiérrez and M. Pätzold:
    The generalized method of equal areas for the design of sum-of-cisoids simulators for mobile Rayleigh fading channels with arbitrary Doppler spectra,
    Wireless Communications and Mobile Computing, vol. 13, no. 10, pp. 951-966, 2013.
  61. G. Rafiq and M. Pätzold:
    The impact of shadowing and the severity of fading on the first and second order statistics of the capacity of OSTBC MIMO Nakagami-lognormal channels,
    Wireless Personal Communications (WPC), DOI 10.1007/s11277-011-0275-x (online first), 2011.
  62. M. Pätzold, A. F. Molisch, and C. Oestges:
    Editorial: Trends in Mobile Radio Channels — Modelling, Analysis and Simulation,
    IEEE Veh. Technol. Mag., vol. 6, no. 2, pp. 21–22, Jun. 2011.
  63. C. E. D. Sterian, Y. Ma, M. Pätzold, I. Banica, and H. He:
    New super-orthogonal space-time trellis codes using differential M-PSK for noncoherent mobile communication sys tems with two transmit antennas,
    Annals of Telecommunications, vol. 66, no. 3/4, pp. 257–273, Mar./Apr. 2011.
  64. B. Talha, M. Pätzold:
    A geometrical three-ring-based model for MIMO mobile-to-mobile fading channels in cooperative networks,
    EURASIP Journal on Advances in Signal Processing, vol. 2011, Article ID 892871, DOI:10.1155/2011/892871.
  65. M. Pätzold, N. Avazov, V. D. Nguyen:
    Design and simulation of measurement-based correlation models for shadow fading,
    REV, Journal on Electronics and Communications, vol. 1, no. 2, April-June 2011.
  66. B. Talha, M. Pätzold:
    Channel models for mobile-to-mobile cooperative communication systems: A state-of-the-art review,
    IEEE Vehicular Technology Magazine, vol.6, no. 2, June 2011.
  67. C. E. D. Sterian, M. Pätzold, and Y. Wu:
    Super-orthogonal and quasi-super-orthogonal space-frequency trellis coding using OFDM for broadband wireless communications,
    Revue Roumaine des Sciences Techniques, vol. 56, no. 1, pp. 89–98, Jan. /Mar. 2011.
  68. C. A. Gutiérrez and M. Pätzold:
    The design of sum-of-cisoids Rayleigh fading channel simulators assuming non-isotropic scattering conditions,
    IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1308–1314, Apr. 2010
  69. C.E.D. Sterian, K. Wesolowski, Y. Wu, M. Pätzold:
    Reducing the peak and average power of OFDM systems using QAM by constellation shaping,
    European Trans. Telecommun., vol. 21, no. 1, pp. 35 – 49, Jan. 2010.
  70. B. Talha and M. Pätzold:
    Statistical modeling and analysis of mobile-to-mobile fading channels in cooperative networks under line-of-sight conditions,
    Wireless Personal Communications (WPC), vol. 54, no. 1, pp. 3–19, 2010.
  71. B. Talha and M. Pätzold:
    Mobile-to-mobile fading channels in amplify-and-forward relay systems under line-of-sight conditions: statistical modeling and analysis,
    Annals of Telecommunications, vol. 65, no. 7–8, pp. 391–410, Aug. 2010.
  72. H. Zhang, D. Yuan, M. Pätzold, Y. Wu and V.D. Nguyen:
    A novel wideband space-time channel simulator based on the geometrical one-ring model with application in MIMO-OFDM systems,
    Wireless Communications and Mobile Computing, published online, vol. 10, no. 6, pp. 758 – 771, 2010.
  73. M. Pätzold, C.-X. Wang and B. Hogstad:
    Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated Rayleigh fading waveforms,
    IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3122–3131, Jun. 2009.
  74. B. Talha and M. Pätzold:
    Statistical modeling and analysis of mobile-to-mobile fading channels in cooperative networks under line-of-sight conditions ,
    Wireless Personal Communications, Special Issue on “Wireless Future”, published online, vol. 54, no. 1, pp. 3 – 19, Apr. 2009.
  75. G. Rafiq and M. Pätzold:
    The influence of LOS components on the statistical properties of the capacity of amplify-and-forward channels,
    Wireless Sensor Network (WSN), invited paper, vol.1, no.1, pp. 7 – 14, April 2009.
  76. M. Pätzold and Y. Jiang:
    Editorial: Special issue on ‘wireless future’,
    Wireless Personal Communications, vol. 50, no. 1, pp. 1–3, 2009, DOI 10.1007/s11277-008-9557-3.
  77. Y. Wu and M. Pätzold:
    Parameter optimization for amplify-and-forward relaying systems with pilot symbol assisted modulation,
    Wireless Sensor Network (WSN), invited paper, vol.1, no.1, pp. 15 – 21, April 2009.
  78. B. O. Hogstad, M. Pätzold, N. Youssef, and V. Kontorovich:
    Exact closed-form expressions for the distribution, the level-crossing rate, and the average duration of fades of the capacity of OSTBC-MIMO channels,
    IEEE Trans. Veh. Technol ., vol. 58, no. 2, pp. 1011–1058, Feb. 2009.
  79. G. Rafiq and M. Pätzold:
    A Study of the influence of shadowing on the statistical properties of the capacity of mobile radio channels,
    Wireless Personal Communications, vol. 50, no. 1, pp. 5 – 18, Jul 2009.
  80. M. Pätzold and K. Yang:
    An exact solution for the level-crossing rate of shadow fading processes modelled by using the sum-of-sinusoids principle,
    Wireless Personal Communications, Special Issue, published online , 2008.
  81. C. A. Gutiérrez, M. Cabrera-Bean, and M. Pätzold:
    On the problems of symbol-spaced tapped-delay-line models for WSSUS channels,
    Wireless Communications and Mobile Computing, 2008, Wirel. Commun. Mob. Comput. 2009; vol. 9, pp. 1181–1193
  82. C. E. D. Sterian, Y. Wu, and M. Pätzold:
    Super-quasiorthogonal space-time trellis codes for four transmit antennas with rectangular signal constellations,
    Annals of Telecommuncations, vol. 63, no. 5/6, pp. 331-350, May/June, 2008. DOI 10.1007/s12243-008-0031-8
  83. M. Pätzold and B. O. Hogstad:
    A wideband MIMO channel model derived from the geometrical elliptical scattering model,
    Wireless Communications and Mobile Computing, vol.8, pp. 597-605, May, 2007. DOI: 10.1002/wcm.572
  84. M. Pätzold, B. O. Hogstad, and N. Youssef:
    Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels,
    IEEE Trans. Wireless Commun., vol.7, no. 2, pp. 510–520, Feb. 2008. DOI 10.1109/TWC.2008.05913
  85. C. -X. Wang, M. Pätzold, Q. Yao:
    Stochastic modelling and simulation of frequency correlated wideband fading channels,
    IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1050–1063, May 2007.
  86. C. -X. Wang, M. Pätzold, D. F. Yuan:
    Accurate and efficient simulation of multiple uncorrelated Rayleigh fading waveforms,
    IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 833–839, Mar. 2007.
  87. C. E. D. Sterian, S. Linga, H. Singh, M. Pätzold:
    New super-orthogonal space-time codes with 32QAM and two transmit antennas for five bits per signalling interval,
    European Transactions on Telecommunications, vol. 18, pp. 205–215, 2007.
  88. V. D. Nguyen, M. Pätzold, F. Maehara, H. Haas, M.-V. Pham:
    Channel estimation and interference cancellation for MIMO-OFDM systems,
    IEICE Transactions on Communications, vol. E90-B, no. 2, pp. 277–290, Feb. 2007.
  89. M. Pätzold, B. O. Hogstad, D. Kim:
    A new design concept for high-performance fading channel simulators using set partitioning,
    Wireless Personal Communications, vol. 40, no. 2, pp. 267–279, Feb. 2007.
  90. H. Zhang, D. Yuan, M. Pätzold:
    Novel study on PARSs reduction in wavelet-based multicarrier modulation systems,
    Digital Signal Processing 17, no. 1, Elsevier, Jan. 2007, pp. 272–279.
  91. Y. Wu, V. K. N. Lau, M. Pätzold:
    Constellation design for trellis-coded unitary space-time modulation systems,
    IEEE Trans. Commun., vol. 54, no. 11, Nov. 2006, pp. 1948–1959.
  92. C. E. D. Sterian, H. Singh, M. Pätzold, B. O. Hogstad:
    Super-orthogonal space-time codes with rectangular constellations and two transmit antennas for high data rate wireless communications,
    IEEE Trans. Wireless Commun., vol. 5, no. 7, Jul. 2006, pp. 1857-1865.
  93. M. Pätzold, B. O. Hogstad:
    Classes of sum-of-sinusoids Rayleigh fading channel simulators and their stationary and ergodic properties – Part I,
    WSEAS Transactions on Mathematics, vol. 5, no. 2,Feb. 2006, pp. 222–230.
  94. M. Pätzold, B. O. Hogstad:
    Classes of sum-of-sinusoids Rayleigh fading channel simulators and their stationary and ergodic properties – Part II,
    WSEAS Transactions on Mathematics, vol. 4, no. 4, Oct. 2005, pp. 441–449.
  95. N. Youssef, C.-X. Wang, M. Pätzold:
    A study on the second order statistics of Nakagami-Hoyt mobile fading channels,
    IEEE Trans. Veh. Technol., vol. VT-54, no. 4, July 2005, pp. 1259-1265.
  96. N. Youssef, W. ElBahri, M. Pätzold, S. ElAsmi:
    On the crossing statistics of phase processes and random FM noise in Nakagami-q mobile fading channels,
    IEEE Trans. Wireless Commun., vol. 4, no. 1, Jan. 2005, pp. 24-29.
  97. V. D. Nguyen, H. -P. Kuchenbecker, M. Pätzold:
    Schätzung der Kanalstoßantwortlänge in Funksystemen und ein neues Konzept für OFDM-Systeme mit adaptiver Schutzintervalllänge,
    Frequenz, Zeitschrift für Telekommunikation (German journal), vol. 58, no. 11/12, Nov./Dec. 2004, pp. 239-245.
  98. M. Pätzold, B. O. Hogstad:
    A space-time channel simulator for MIMO channels based on the geometrical one-ring scattering model,
    Wireless Communications and Mobile Computing, Special Issue on Multiple-Input Multiple-Output (MIMO) Communications, vol. 4, no. 7, Nov. 2004, pp. 727-737.
  99. C. E. D. Sterian, C.-X. Wang, R. Johnson, M. Pätzold:
    Rotationally invariant space-time trellis codes with 4-D rectangular constellations for high data rate wireless communications,
    KICS Journal for Communications and Networks, vol. 6, no. 3, Sept. 2004, pp. 258-268.
  100. M. Pätzold,
    On the stationarity and ergodicity of fading channel simulators based on Rice’s sum-of-sinusoids,
    International Journal of Wireless Information Networks (IJWIN), vol. 11, no. 2, Apr. 2004, pp. 63-69.
  101. C.-X. Wang, M. Pätzold,
    A generative deterministic model for digital mobile fading channels,
    IEEE Communications Letters, vol. CL-8, no. 4, April 2004, pp. 223-225.
  102. M. Pätzold, A. Szczepanski, N. Youssef:
    Methods for modelling of specified and measured multipath power delay profiles,
    IEEE Trans. Veh. Technol., vol. VT-51, no. 5, Sept. 2002, pp. 978-988. 4
    Remark : The IEEE Technology Society awarded this paper with the 2002 Neal Shepherd Memorial Best Propagation Paper Award .
  103. M. Pätzold, N. Youssef:
    Modelling and simulation of direction-selective and frequency-selective mobile radio channels,
    International Journal of Electronics and Communications, vol. AEÜ-55, no. 6, Nov. 2001, pp. 433-442.
  104. M. Pätzold, R. García, F. Laue:
    Design of high-speed simulation models for mobile fading channels by using table look-up techniques,
    IEEE Trans. Veh. Technol., vol. VT-49, no. 4, July 2000, pp. 1178-1190.
  105. C. E. D. Sterian, F. Laue, M. Pätzold:
    Trellis-coded quadrature amplitude modulation with 2N-dimensional constellations for mobile radio channels,
    IEEE Trans. Veh. Technol., vol. VT-48, no. 5, Sept. 1999, pp. 1475-1487.
  106. M. Pätzold, F. Laue:
    Level-crossing rate and average duration of fades of deterministic simulation models for Rice fading shannels,
    IEEE Trans. Veh. Technol., vol. VT-48, no. 4, July 1999, pp. 1121-1129.
  107. M. Pätzold, U. Killat, F. Laue:
    An extended Suzuki model for sand mobile satellite channels and its statistical properties,
    IEEE Trans. Veh. Technol., vol. VT-47, no. 2, May 1998, pp. 617-630.
  108. M. Pätzold, Y. Li, F. Laue:
    A study of a land mobile satellite channel model with asymmetrical Doppler power spectrum and lognormally distributed line-of-sight component,
    IEEE Trans. Veh. Technol., vol. VT-47, no. 1, Feb. 1998, pp. 297-310.
  109. M. Pätzold, U. Killat, F. Laue, Y. Li:
    On the statistical properties of deterministic simulation models for mobile fading channels,
    IEEE Trans. Veh. Technol., vol. VT-47, no. 1, Feb. 1998, pp. 254-269. 4
    Remark : The IEEE Technology Society awarded the paper with the 1998 Neal Shepherd Memorial Best Propagation Paper Award .
  110. M. Pätzold, U. Killat, Y. Li, F. Laue:
    Modelling, analysis, and simulation of nonfrequency-selective mobile radio channels with asymmetrical Doppler power spectral density shapes,
    IEEE Trans. Veh. Technol., vol. VT-46, no. 2, May 1997, pp. 494-507.
  111. M. Pätzold, U. Killat, F. Laue:
    A deterministic digital simulation model for Suzuki processes with application to a shadowed Rayleigh land mobile radio channel,
    IEEE Trans. Veh. Technol., vol. VT-45, no. 2, May 1996, pp. 318-331.
  112. M. Pätzold, U. Killat, Y. Shi, F. Laue:
    A deterministic method for the derivation of a discrete WSSUS multipath fading channel model,
    European Transactions on Telecommunications and Related Technologies (ETT), vol. ETT-7, no. 2, March/April 1996, pp. 165-175.