CareWell

Cooperative Human Activity Recognition and Localization for Healthcare and Wellbeing

Overview

Matthias Pätzold Mobile Communications Group

Department of Information and Communication Technology University of Agder

Outline

- Introduction
- Vision of CareWell
- Objectives of CareWell
- Structure of CareWell
- Main Research Areas of CareWell
- Outlook

Introduction: Fact Sheet

Duration 01.01.2020–31.12.2023	Funded by RCN	 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			
Budget 24 MNOK RCN Funding Ca. 16 MNOK	IKTPLUSS	 University of San Aalto University, F Municipality Partner 1 Lillesand kommune 	Luis Potosí (UASLP), Mexico Finland Industry Partners 2 • Super Radio • Tingtun		

CareWell Team: Professors

Mathias Pätzold Professor, UiA

Project Manager

Yuriy Rogovchenko Professor, UiA

Michael Cheffena Professor, NTNU

Stephen Sigg Professor, Aalto Uni.

Carlos Adrian Gutierrez Professor, UASLP

င်။ UiA

CareWell Team: Researchers, Post docs, and PhD

Muhammad Muaaz Researcher, UiA

Rym Hicheri Researcher, UiA

Hasan Najjar PhD, UiA

Masoud Mohtadifar PhD, NTNU

Nurilla Avazov Post doc, UiA

Altay Zhakatayev Post doc, UiA

Sahil Waqar PhD, UiA

င်။ UiA

Vision of CareWell

ြေ UiA

Objectives of CareWell

To realize our vision of a non-wearable sensor system that can not only detect but also locate a large number of human activities with high accuracy.

- 1. To collect, for the first time ever, combined radio-frequency (RF) and acoustic sensor data set in the presence of active users.
- 2. To develop a data augmentation framework, for generating synthetic RF data that represents human movements, which consequently reduces the training data collection efforts by a factor of at least 100.
- 3. To estimate the velocity and localize dynamic human body parts from RF sensor data.
- 4. To detect at-least 20 user activities with an accuracy of 97%.
- 5. To develop a prototype that detects activities in real-time and localizes dynamic human body parts within a sub-decimeter range.

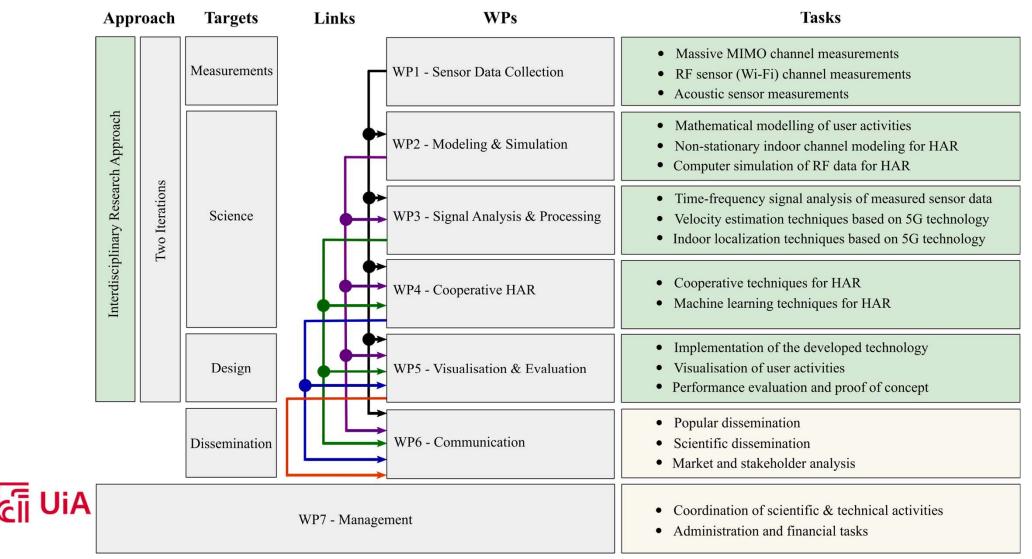
7

6. To perform market and stakeholder analysis towards a resilient business plan.

What Makes CareWell Different?

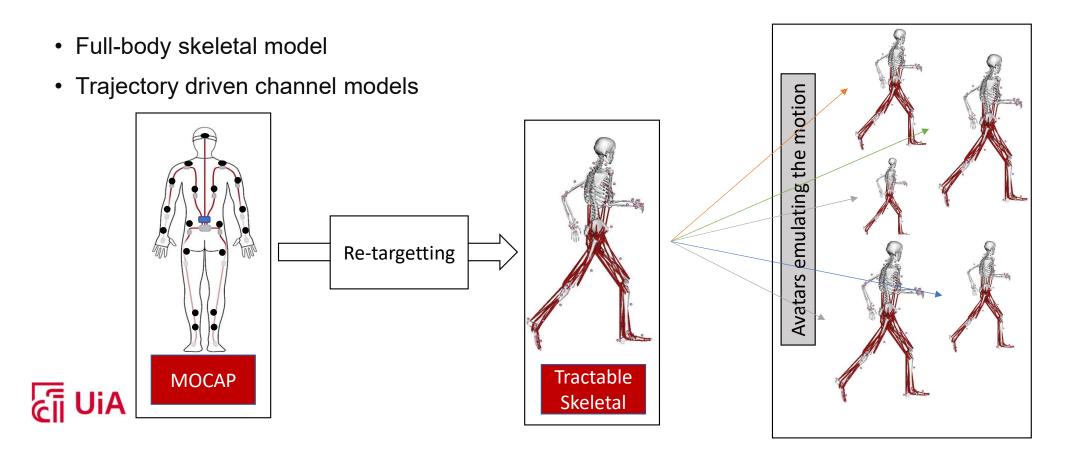
CareWell

- 1. Highly realistic channel model
 - Sum-of-cisoids concept
 - Nonstationary aspects
 - Environmental aspects
 - 3D Model
- 2. Software-based design approach
- 3. Joint RF and audio sensing

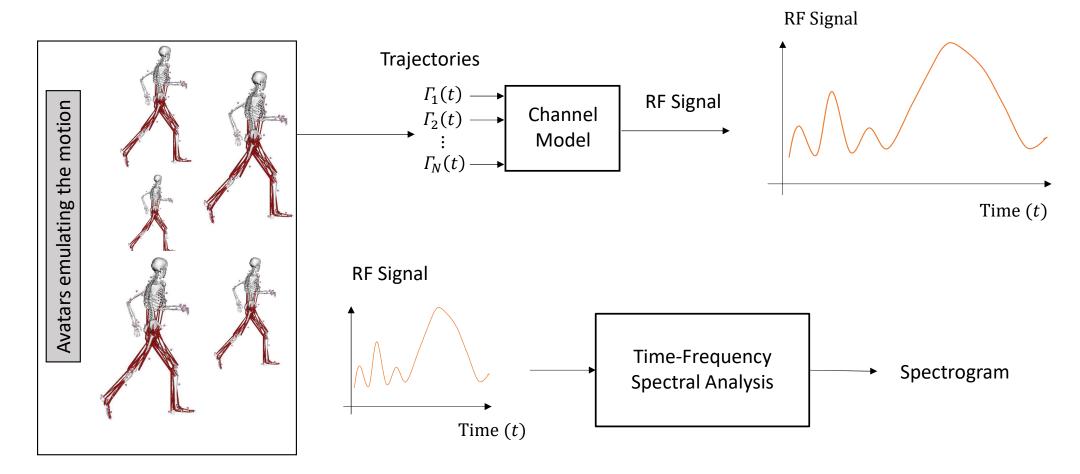

Channel Models in CareWell: Concluding on human activities from the received RF signal Traditional channel models: Studying the influence of walking persons on the characteristics of the received signal

- 1. Simplified channel model
- 2. Experimental-based design approach
- 3. Mostly single sensing modality

Structure of CareWell


Main Research Areas of CareWell

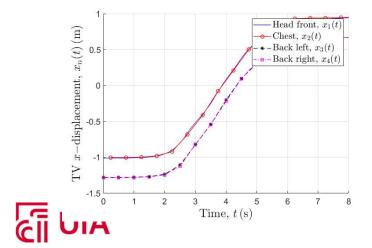
- 1. Modelling and Simulation
- 2. Localization of Moving Objects
- 3. Cooperative Human Activity Recognition (HAR)

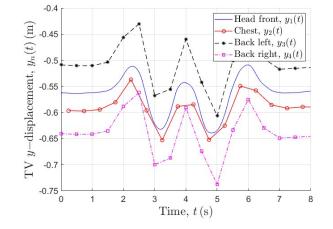


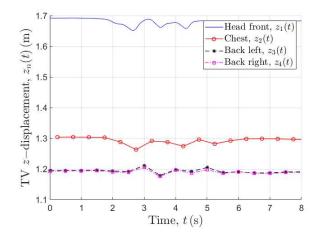
Modelling and Simulation

To investigate the impact of dynamic human body segments of a person performing different activities on the micro-Doppler signatures.

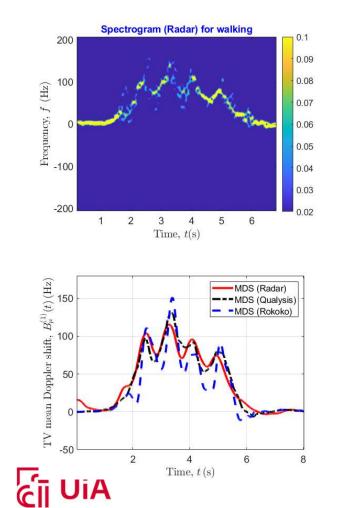
Modelling and Simulation

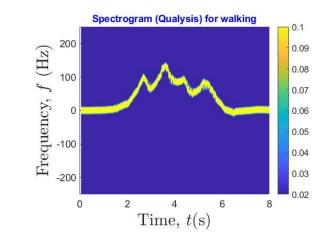


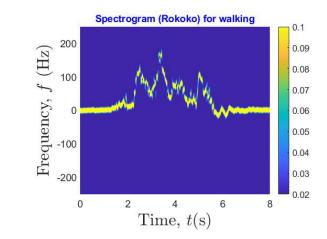

င်။ UiA


Concept in Action

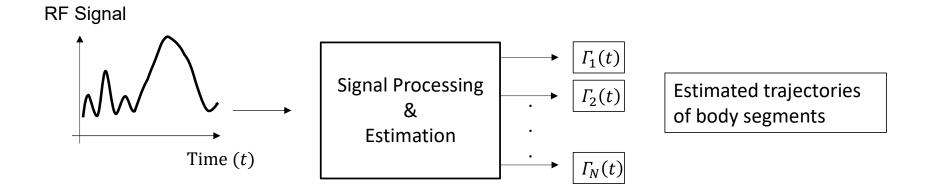
		Parameters	Values
		(x_T, y_T, z_T)	(3.1,0,1.1) m
		(x_R, y_R, z_R)	(3.1,0,1.1) m
		Carrier frequency f_c	24.125 GHz
		Bandwidth B	250 MHz


• Trajectories of body segments for the walking activity

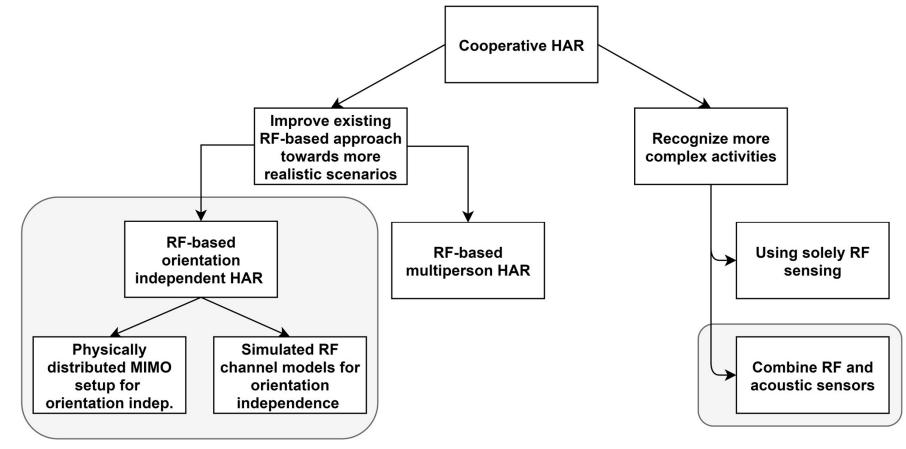




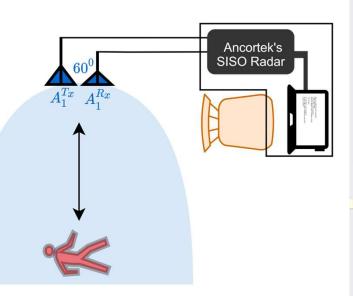
Concept in Action

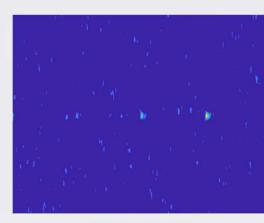


- A Good match between the spectrogram of the measured RF data and those of the trajectory-driven simulation model (MOCAP data).
- The TV mean Doppler shift of the Qualisys data-driven simulation model demonstrates a good fit to the one of the measure radar data.


Localization of Moving Objects

To estimate the velocity and localization of active body segments from RF sensor data.

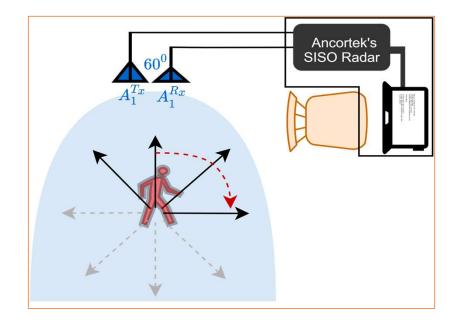



Cooperative HAR

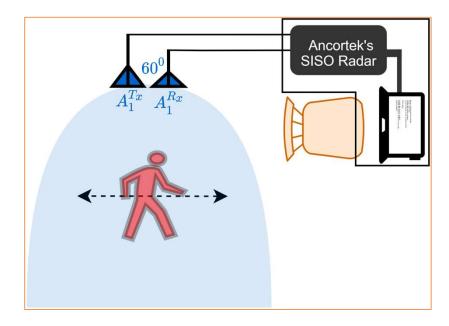
ୋଁ UiA

RF-Based HAR in Action

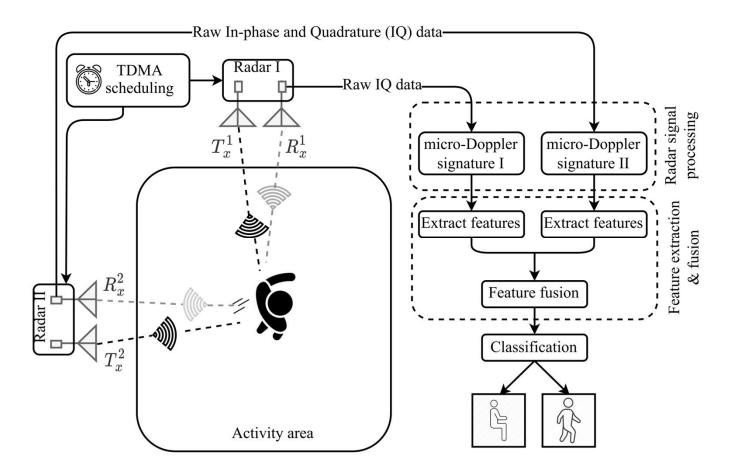
Activity fingerprint

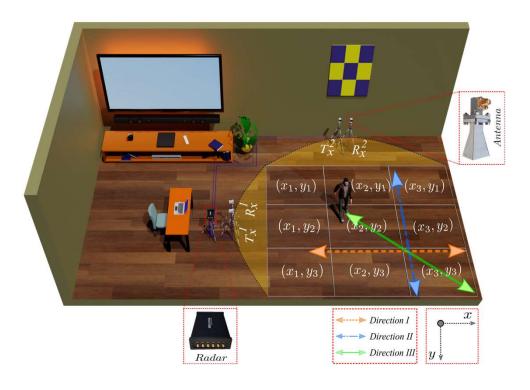

New to MATLAPI See resources for <u>Getting Started</u>. No Activity Walking Waiting for a incomming data file... A new file is found Walking A new file is found No Activity No Activity No Activity Waiting for a incomming data file...

fx

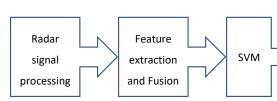

୍ଦି UiA

Orientation independent HAR


Activity fingerprint significantly changes and become less distinct, as we move from parallel to perpendicular.


The system does not perform well when activities are performed perpendicular to the boresight of the radar.

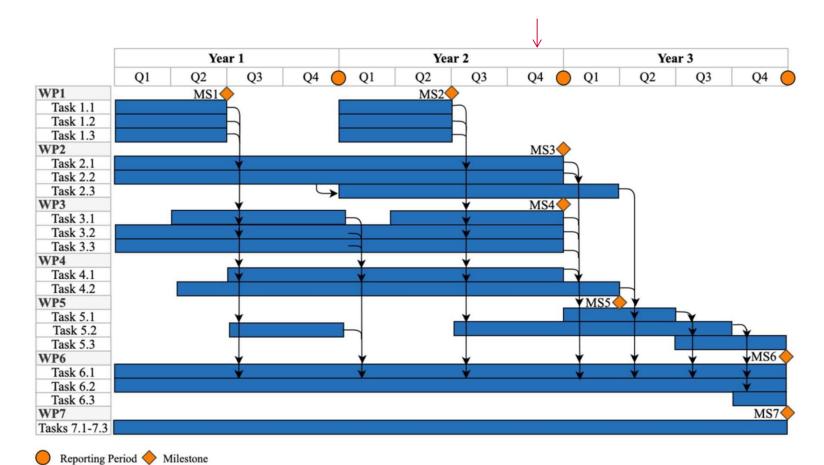
Orientation independent HAR



င်္ဂြံ UiA

Orientation independent HAR

Person # Activity description	1	2	3	4	5	6	Total Activities
Falling	60	60	18	18	-	-	156
Walking	80	80	40	40	24	24	288
Sitting down on the chair	105	105	27	27	27	27	318
Standing up from the chair	105	105	27	27	27	27	318
Picking up an object from the ground	105	105	27	27	27	27	318
Total	-	-	-	-	-	-	1398



	Fall	42	0	0	0	0	$\begin{array}{c} 42 \\ 100\% \\ 0.00\% \end{array}$
	Walk	0	88	0	0	0	88 100% 0.00%
d labe	Stand	0	0	103	0	0	$\begin{array}{c} 103 \\ 100\% \\ 0.00\% \end{array}$
redicte	Sit	0	0	0	81	0	81 100% 0.00%
	Pick	0	0	1	5	90	96 93.75% 6.25%
		$\begin{array}{c} 42 \\ 100\% \\ 0.00\% \end{array}$	88 100% 0.00%	$\begin{array}{c} 104 \\ 99.04\% \\ 0.96\% \end{array}$	86 94.19% 5.81%	90 100% 0.00%	$\begin{array}{r} 410 \\ 98.54\% \\ 1.46\% \end{array}$
		Fall	Walk	Stand	Sit	Pick	

Actual labels

င်္ဂြံ UiA

Where we are?

21

Project Pipeline and Trends in RF Sensing

Technology	WiCare (2018 – 2021)	CareWell (2020 – 2023)	Future Projects (≥ 2023)
RF Sensing system	Wi-Fi	Radar	mmWave radar
Antenna system	SISO	SISO & MIMO	MIMO & massive MIMO
Frequency range	2.4 GHz	24 GHz	> 60 GHz
Sensing modalities	RF	RF & audio	Multimodal
Features	Few basic activities (falling, walking, etc.)	Sequences of complex activities	Fine grained activities
Applications	HAR	HAR and eHealth	HAR, eHealth, sports,

Thank you

https://mcg.uia.no/publications/

Contact Information

Mobile Communications Group, Faculty of Engineering and Science, University of Agder, 4898, Grimstad, Norway.

